博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
网络最大流算法—Dinic算法及优化
阅读量:6279 次
发布时间:2019-06-22

本文共 2765 字,大约阅读时间需要 9 分钟。

前置知识

前言

Dinic在信息学奥赛中是一种最常用的求网络最大流的算法。

它凭借着思路直观,代码难度小,性能优越等优势,深受广大oier青睐

思想

$Dinic$算法属于增广路算法。

它的核心思想是:对于每一个,对其所连的边进行增广,在增广的时候,每次增广“极大流”

这里有别于EK算法,EK算法是从边入手,而Dinic算法是从点入手

在增广的时候,对于一个点连出去的边都尝试进行增广,即多路增广

 

Dinic算法还引入了分层图这一概念,即对于$i$号节点,用$dis(i)$表示它到源点的距离,并规定,一条边能够被增广,当且仅当它连接的两个点$u,v$满足:$dis(v)=dis(u)+1$,这样可以大大优化其时间复杂度。

 

实现

有了上面的知识,Dinic实现起来也就比较简单了。

每次BFS构造分层图(注意必须每次都重新构造,因为每次增广之后会删除一些无用的边,也就会删除一些无用的点)

然后从源点开始多路增广

 

优化

  • 当前弧优化:对于每个点,我们记录下它已经增广了哪些边,当再次回到这个点的时候,无视已经增广过的边,从下一条边开始增广
  • 分层优化(自己xjb起的名字):在进行分层的时候,找到汇点立即退出
  • 剩余量优化(也是自己起的):在进行增广的时候,如果该节点已经没有流量,直接退出

时间复杂度

Dinic算法的理论时间复杂度为$O(n^2*m)$

证明可以看

但是!

Dinic算法的性能在比赛中表现的非常优越。

按照集训队大佬ly的说法,我们可以认为Dinic算法的时间复杂度是线性的(比某标号算法不知道高到哪里去了)

代码

#include
#include
#include
#define AddEdge(x,y,z) add_edge(x,y,z),add_edge(y,x,0);using namespace std;const int MAXN=1e6+1;const int INF=1e8+10;inline char nc(){ static char buf[MAXN],*p1=buf,*p2=buf; return p1==p2&&(p2=(p1=buf)+fread(buf,1,MAXN,stdin),p1==p2)?EOF:*p1++;}inline int read(){ char c=nc();int x=0,f=1; while(c<'0'||c>'9'){
if(c=='-')f=-1;c=nc();} while(c>='0'&&c<='9'){x=x*10+c-'0';c=nc();} return x*f;}int N,M,S,T;struct node{ int v,flow,nxt;}edge[MAXN*4];int head[MAXN],cur[MAXN],num=0;//注意这里必须从0开始 inline void add_edge(int x,int y,int z){ edge[num].v=y; edge[num].flow=z; edge[num].nxt=head[x]; head[x]=num++;}int deep[MAXN],q[MAXN];inline bool BFS(){ memset(deep,0,sizeof(deep)); deep[S]=1; int l=0,r=1; q[++l]=S; while(l<=r) { int p=q[l++]; for(int i=head[p];i!=-1;i=edge[i].nxt) if(!deep[edge[i].v]&&edge[i].flow) { deep[edge[i].v]=deep[p]+1;q[++r]=edge[i].v; if(edge[i].v==T) return 1;//当找到汇点的时候直接返回 快30ms } } return deep[T];}int DFS(int now,int nowflow){ if(now==T) return nowflow; int totflow=0;//从这个点总共可以增广多少流量 for(int i=head[now];i!=-1;i=edge[i].nxt)//当前弧优化 快150ms { if(deep[edge[i].v]==deep[now]+1&&edge[i].flow)//只有满足距离要求与流量要求的点才能进行增广 { int canflow=DFS(edge[i].v,min(nowflow,edge[i].flow)); edge[i].flow-=canflow;edge[i^1].flow+=canflow;//增广 totflow+=canflow; nowflow-=canflow; if(nowflow<=0) break; //当前点已经没有流量 快100ms } } return totflow;}void Dinic(){ int ans=0; while(BFS())//每次构造分层图 { memcpy(cur,head,sizeof(head)); //当前弧优化 ans+=DFS(S,INF);//进行增广 } printf("%d",ans);}int main(){ #ifdef WIN32 freopen("a.in","r",stdin); #else #endif N=read();M=read();S=read();T=read(); memset(head,-1,sizeof(head)); for(int i=1;i<=M;i++) { int x,y,z; x=read();y=read();z=read(); AddEdge(x,y,z); } Dinic(); return 0;}

 

转载地址:http://omyva.baihongyu.com/

你可能感兴趣的文章
MySQL 索引 BST树、B树、B+树、B*树
查看>>
微信支付
查看>>
CodeBlocks中的OpenGL
查看>>
短址(short URL)
查看>>
C++零基础教程(一)——何谓编程
查看>>
第十三章 RememberMe——《跟我学Shiro》
查看>>
mysql 时间函数 时间戳转为日期
查看>>
索引失效 ORA-01502
查看>>
Oracle取月份,不带前面的0
查看>>
Linux Network Device Name issue
查看>>
IP地址的划分实例解答
查看>>
如何查看Linux命令源码
查看>>
运维基础命令
查看>>
入门到进阶React
查看>>
SVN 命令笔记
查看>>
检验手机号码
查看>>
重叠(Overlapped)IO模型
查看>>
Git使用教程
查看>>
使用shell脚本自动监控后台进程,并能自动重启
查看>>
Flex&Bison手册
查看>>